7 research outputs found

    Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551

    Get PDF
    The complete sequence of pPDL2 (37,317 bp), an indigenous plasmid of Sphingobium fuliginis ATCC 27551 that encodes genes for organophosphate degradation (opd), revealed the existence of a site-specific integrase (int) gene with an attachment site attP, typically seen in Integrative Mobilizable Elements (IME). In agreement with this sequence information, site-specific recombination was observed between pPDL2 and an artificial plasmid having a temperature-sensitive replicon and a cloned attB site at the 3′ end of the seryl tRNA gene of Sphingobium japonicum. The opd gene cluster on pPDL2 was found to be part of an active catabolic transposon with mobile elements y4qE and Tn3 at its flanking ends. Besides the previously reported opd cluster, this transposon contains genes coding for protocatechuate dioxygenase and for two transport proteins from the major facilitator family that are predicted to be involved in transport and metabolism of aromatic compounds. A pPDL2 derivative, pPDL2-K, was horizontally transferred into Escherichia coli and Acinetobacter strains, suggesting that the oriT identified in pPDL2 is functional. A well-defined replicative origin (oriV), repA was identified along with a plasmid addiction module relB/relE that would support stable maintenance of pPDL2 in Sphingobium fuliginis ATCC 27551. However, if pPDL2 is laterally transferred into hosts that do not support its replication, the opd cluster appears to integrate into the host chromosome, either through transposition or through site-specific integration. The data presented in this study help to explain the existence of identical opd genes among soil bacteria

    OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides

    No full text
    While screening a genomic library of Acinetobacter baumannii DS002 isolated from organophosphate (OP)-polluted soils, nine ORFs were identified coding for glutathione S-transferase (GST)-like proteins. These GSTs (AbGST01–AbGST09) are phylogenetically related to a number of well-characterized GST classes found in taxonomically diverse groups of organisms. Interestingly, expression of Abgst01 (GenBank accession no. KF151191) was upregulated when the bacterium was grown in the presence of an OP insecticide, methyl parathion (MeP). The gene product, AbGST01, dealkylated MeP to desMeP. An OxyR-binding motif was identified directly upstream of Abgst01. An Abgst–lacZ gene fusion lacking the OxyR-binding site showed a drastic reduction in promoter activity. Very low β-galactosidase activity levels were observed when the Abgst–lacZ fusion was mobilized into an oxyR (GenBank accession no. KF151190) null mutant of A. baumannii DS002, confirming the important role of OxyR. The OxyR-binding sites are not found upstream of other Abgst (Abgst02–Abgst09) genes. However, they contained consensus sequence motifs that can serve as possible target sites for certain well-characterized transcription factors. In support of this observation, the Abgst genes responded differentially to different oxidative stress inducers. The Abgst genes identified in A. baumannii DS002 are found to be conserved highly among all known genome sequences of A. baumannii strains. The versatile ecological adaptability of A. baumannii strains is apparent if sequence conservation is seen together with their involvement in detoxification processes

    Rice Seed Germination Underwater: Morpho-Physiological Responses and the Bases of Differential Expression of Alcoholic Fermentation Enzymes

    No full text
    The water-, energy-, and labor-intensive system of transplanted puddled rice (Oryza sativa) is steadily being replaced by direct seeding due to the progressive scarcity of these resources. However, the alternate dry direct seeding leads to competition with weeds and poor establishment when soils are flooded. Direct seeded rice capable of anaerobic germination (germination in flooded soil, AG) is ideal, which under rainfed ecosystems would also overcome waterlogging during germination. AG tolerance is associated with faster germination and faster elongation of coleoptiles, with the activities of alcoholic fermentation enzymes replacing aerobic respiration as a source of energy. To better understand the variability in the morpho-physiological responses and in the nature of the alcoholic fermentation enzymes during AG, 21 rice genotypes were studied. The genotypes Khao Hlan On (KHO) and IR42 were used as the tolerant and susceptible checks, respectively. KHO exhibited faster germination, with 82.5% of the coleoptiles emerging out of 10 cm of water within 8 days, whereas IR42 exhibited 20% germination and limited coleoptile growth. Among the test genotypes, four performed well, including two that are drought tolerant. Increased content and activity of the alcoholic fermentation enzymes, alcohol dehydrogenase (ADH1) and acetaldehyde dehydrogenase (ALDH2a and ALDH2b), was noted in KHO under anaerobic than under aerobic conditions and also in comparison with IR42 under AG. Gene transcripts for these enzymes were also more in KHO undergoing AG. However, no major differences were observed between KHO and IR42 in the critical cis-acting regulatory elements, such as the auxin, light, and sugar response elements, in the promoters of ADH1, ALDH2a, and ALDH2b genes. Post-transcriptional and post-translational regulatory mechanisms were implicated for the increased transcript and protein content/activity of the enzymes in KHO by observing four different transcripts of ALDH2a and a unique non-glycosylated form of ADH1 under AG. IR42 lacked the non-glycosylated ADH1 and contained only a truncated form of ALDH2a, which lacked the active site. Additionally, KHO exhibited increased activity and more isoforms for reactive oxygen species detoxifying enzymes under AG compared to IR42. These results highlight the need for a deeper functional understanding of the critical enzymes involved in AG

    Acorus calamus L. var. angustatus Bess.

    No full text
    原著和名: シャウブ科名: サトイモ科 = Araceae採集地: 千葉県 千葉市 千葉大学 (下総 千葉大学)採集日: 1972/5/5採集者: 萩庭丈壽整理番号: JH033778国立科学博物館整理番号: TNS-VS-98377

    Genome wide association and gene validation studies for early root vigor to improve direct seeding of rice

    No full text
    Elucidation of the genetic control of rice seedling vigour is now paramount with global shifts towards direct seeding of rice and the consequent demand for early vigor traits in breeding programs. In a genome wide association study using an indica‐predominantdiversity panel we identified quantitative trait loci (QTLs) for root length and root number in rice seedlings. Among the identified QTLs, one QTL for lateral root number on chromosome 11, qTIPS‐11, explained was associated with a 32.4% increase in lateral root number. The locus was validated in independent backgrounds and a predicted glycosyl hydrolase, TIPS‐11‐9, was identified as the causal gene for observed phenotypic differences. TIPS‐11‐9 was differentially expressed in emerging lateral roots of contrasting qTIPS‐11 haplotypes, which was likely due to differences in cis‐regulatory elements and auxin‐responsiveness. Abolishment of Tips‐11‐9 function through T‐DNA insertion in a qTIPS‐11‐positive background resulted in a reduction of lateral root number, which negatively affected biomass accumulation, particularly under phosphorous‐limiting conditions. Marker‐assisted introgression of qTIPS‐11 into modern indica varieties will aid in the generation of varieties adapted to direct seeding and thus facilitate the adoption of direct seeding practices in tropical Asia
    corecore